Control Issues of KKLT

Daniel Junghans

Harvard University
Center of Mathematical Sciences and Applications

Based on arXiv:2009.03914 with Xin Gao and Arthur Hebecker
Outline

Introduction

The singular-bulk problem

Escape routes

Conclusions
Introduction
dS vacua in string theory?

Long debated question: Is dS possible in string theory?

- Plausible and much studied scenarios such as KKLT, LVS
 But not fully explicit

- Many no-go theorems in particular corners of string theory

No-dS conspiracy?

e.g. (refined) dS conjecture

Can this be true?
→ Crucial to construct explicit models realizing the scenarios
 or identify potential problems

Today: focus on earliest and most studied proposal, the KKLT scenario
Proposal: meta-stable dS vacua in 3 steps:

- IIB flux vacua with strongly warped throat modelled locally by Klebanov-Strassler solution

 Fluxes K, M carry D3 charge $N = KM$
 localized at the tip

- Kähler modulus T stabilized by non-perturbative effects (E3 instanton or gaugino condensate on N_c D7 branes)

 SUSY AdS vacua with vacuum energy density

 \[V_{\text{AdS}} \sim -e^{-\text{Re}(T)/N_c} \]

 (up to non-exponential effects)

In the following: set $N_c = 1$ (comments on $N_c \neq 1$ later)
Uplift to dS by placing anti-D3 brane in the throat energy density redshifted due to strong warping

\[V_{\text{uplift}} \sim e^{-K/g_sM} \]

Meta-stable if uplift energy is not too large:

\[V_{\text{uplift}} \sim |V_{\text{AdS}}| \quad \leftrightarrow \quad e^{-K/g_sM} \sim e^{-\text{Re}(T)} \]

\[\text{Re}(T) \sim \frac{N}{g_sM^2} \]

\(g_sM \gtrsim 1 \) (small curvature at KS tip), \(M > 12 \) (meta-stability)

\(g_sM^2 > (6.8)^2 \) (conifold)

→ Treat \(g_sM^2 \gg 1 \) as large parameter

Klebanov, Strassler 00
Kachru, Pearson, Verlinde 01

Bena, Dudas, Graña, Lüst 18
Blumenhagen, Kläwer, Schlechter 19
Bena, Buchel, Lüst 19; Dudas, Lüst 19
Randall 19
Observation:
For $g_s M^2 \gg 1$, strongly warped throat *does not “fit”* into weakly warped CY bulk
Possible threat of large singularities

But is this really a problem?
A priori, strong warping can be fine with supergravity approximation

→ Need to study warped geometry for $g_s M^2 \gg 1$
The singular-bulk problem
Constraint on the warp factor

IIB on (conformally) CY orientifold X with (string-frame) metric

\[ds_{10}^2 = h(y)^{-1/2} \eta_{\mu\nu} dx^\mu dx^\nu + h(y)^{1/2} \tilde{g}_{mn} dy^m dy^n \]

warp factor

Ricci-flat, \(\tilde{V}_X \equiv \int_X d^6 y \sqrt{\tilde{g}} = 1 \)

Kähler modulus T is defined in terms of (Einstein-frame) 4-cycle volume wrapped by E3:

\[
\text{Re}(T) \sim S_{E3} \sim \frac{N}{g_s M^2} \quad \Leftrightarrow \quad \frac{1}{g_s} \int_\Sigma d^4 \xi \sqrt{\tilde{g}} h \sim \frac{N}{g_s M^2} \quad (2\pi \sqrt{\alpha'} = 1)
\]

with \(\int_\Sigma d^4 \xi \sqrt{\tilde{g}} \gtrsim k_{111}^{1/3} \tilde{V}_X^{2/3} \sim O(1) \) in our normalization

\[\langle h \rangle_\Sigma \sim \frac{N}{M^2} \]

\[\langle h \rangle_\Sigma \equiv \frac{\int_\Sigma d^4 \xi \sqrt{\tilde{g}} h}{\int_\Sigma d^4 \xi \sqrt{\tilde{g}}} \]

\[\rightarrow \text{warp-factor average over } \Sigma: \]
Warp-factor variation

\[\langle h \rangle_\Sigma \sim \frac{N}{M^2} \] implies a neighborhood on \(\Sigma \) where

\[h \lesssim \frac{N}{M^2} \]

Warp factor satisfies **Poisson equation**:

\[\tilde{\nabla}^2 h = -g_s \tilde{\rho}_{D3} \]

D3-charge density

Variation of the warp factor due to D3 charge \(N \) at the KS tip:

\[|\nabla h| \sim g_s N \quad \text{(at } O(1) \text{ distance in } \tilde{g}) \]

with \(|\nabla h| \equiv \sqrt{(\partial_m h)(\partial_n h)\tilde{g}^{mn}} \)

\[\rightarrow \text{neighborhood on } \Sigma \text{ with } \frac{|\nabla h|}{h} \gtrsim g_s M^2 \gg 1 \]
Singularity

Use $\frac{\partial h}{h} \gtrsim g_s M^2$ with $h(y_0 + \delta y) \approx h(y_0) + \partial_m h(y_0) \delta y^m$

Recall $h = g_s N \times "O(1) function"

\Rightarrow singularity $h \leq 0$ at $|\delta y| \lesssim 1/g_s M^2 \ll 1$

Recap:
- Step 1 of the KKLT proposal requires a flux compactification with a volume modulus $\text{Re}(T) \sim \frac{N}{g_s M^2}$ and a conifold region hosting a D3 charge N
- $\text{Re}(T)$ is too small (relative to N) to ensure small curvature; instead, the D3 charge creates singularities in the bulk
Size of the singularity

How large is the singular region?

Variation of h much larger than its average $\langle h \rangle_\Sigma \sim \frac{N}{M^2}$

$\rightarrow h < 0$ on $O(1)$ fraction of E3 volume (in \tilde{g})

Generically, it will then also spread over an $O(1)$ distance into the transverse space

Complementary argument: coarse-grained warp factor (see paper)
Escape routes
Escape routes?

- **Special geometries** avoiding our parametric estimates e.g. screen KS charge by special O-plane arrangement

- **Large** N_c helps:

 \[
 V_{\text{AdS}} \sim -e^{-\text{Re}(T)/N_c} \iff \frac{|\partial h|}{h} \gtrsim \frac{g_s M^2}{N_c}
 \]

 But: D7 tadpole constraints bound $N_c < O(10) \, h^{1,1}$

- **Variants of KKLT with** $h^{1,1} \neq 1$

 All models suffer from a singular-bulk problem

 Possible exception:

 Parametrically large $h^{1,1} \gtrsim (g_s M^2)^{3/5} \gg 1$

 and $N_c \sim O(h^{1,1})$ D7 stack on most 4-cycles (so $O((h^{1,1})^2)$ D7 branes in total)

 D7 tadpole?
Conclusions
Conclusions

- Flux compactifications admitting a KKLT-like dS uplift generically have large singularities that extend over an $O(1)$ fraction of the Calabi-Yau

- The singularities arise because the charge N in the KS throat leads to a too large variation of the warp factor in the bulk

- Difficult to escape the conclusion

- LVS appears to avoid the problem. Could there be other hidden problems preventing explicit models?
Flux compactifications admitting a KKLT-like dS uplift generically have large singularities that extend over an $O(1)$ fraction of the Calabi-Yau.

The singularities arise because the charge N in the KS throat leads to a too large variation of the warp factor in the bulk.

Difficult to escape the conclusion.

LVS appears to avoid the problem. Could there be other hidden problems preventing explicit models?

Thank you!
Size of the singularity

At large N, we can consider a coarse-grained warp factor $h_c(y)$

$$ \text{with} \quad d_{O3} \ll d \ll 1 \quad (\text{in } \tilde{g})$$

Coarse-grained D3-charge distribution:
Positively-charged lump of diameter d at the tip of the conifold,
uniform negative charge density

\rightarrow Negative “spikes” due to O-planes averaged away in h_c

h_c singular by the same arguments as above

$$\left| \frac{\partial h_c}{h_c} \right| \gg 1$$
Toy model

- Compact space: S^6 with polar angle $\phi \in (0, \pi)$
- Point-like source with charge N at $\phi = 0$ ("KS throat")
- Add uniform negative charge density to satisfy Gauss law ("O-planes")

Poisson equation $\tilde{V}^2 h = -g_s \tilde{\rho}_{D3}$ becomes:

$$\pi^3 [\sin^5 \phi \ h(\phi)']' = -g_s N \left(\delta(\phi) - \frac{15}{16} \sin^5 \phi \right)$$

Solution: $h(\phi) = g_s N h_0(\phi) + \text{const.}$ $h_0(\phi) \sim O(1)$

Fix constant by condition on h at “instanton” position $\phi = \phi_{E3}$:

$$h(\phi_{E3}) \sim \frac{N}{M^2}$$