Probing Higgs Bundles for Local G_2-Manifolds

Max Hübner

Max.Hubner@maths.ox.ac.uk

Seminar Series on String Phenomenology

Overview

1. Introduction and Motivation
2. Local G_2-Manifolds and 7d twisted SYM
3. Higgs Bundles and a Colored Supersymmetric QM
4. Abelian Higgs Backgrounds
5. Summary and Outlook
Introduction and Motivation

M-theory on local (i.e. non-compact) G_2-manifolds engineers minimally supersymmetric gauge theories in 4d.

[Acharya, 2000], [Witten, 2001], [Atiyah, Witten, 2003], [Pantev, Wijnholt, 2009],
[Braun, Cizel, H, Schafer-Nameki, 2018], [Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019],
[Cvetič, Heckman, Rochais, Torres, Zoccarato, 2020], [H, 2020], [Acharya, Kinsella, Svanes, 2020],
[Acharya, Najjar, Foscolo, Svanes, 2020]

The 4d gauge theories describe the localized degrees of freedom in compact G_2-manifolds.

[Acharya, 1998], [Halverson, Morrison, 2015], [Guio, Jockers, Klemm, Yeh, 2017],
[Braun, Schafer-Nameki, 2017], [Braun, Del Zotto, 2017], [Braun, 2019], [Xu, 2020]
F-theory methods relying on Higgs bundles and their spectral covers can be applied to study the physics of local G_2-manifolds. [Beasley, Heckman, Vafa, 2009], [Hayashi, Kawano, Tatar, Watari, 2009], [Marsano, Saulina, Schafer-Nameki, 2009], [Marsano, Saulina, Schafer-Nameki, 2010], [Blumenhagen, Grimm, Jurke, Weigand, 2010], [Donagi, Wijnholt 2011], [Donagi, Wijnholt 2014]

Supersymmetric sigma models probing the geometries give insight into non-perturbative effects and indices.

[Alvarez-Gaumé, Witten, 1981], [Witten, 1982], [Pantev, Wijnholt, 2009],

[Braun, Cizel, H, Schafer-Nameki, 2018], [H, 2020]

Question: What determines the 4d physics engineered by local G_2-manifolds in M-theory?
ALE Fibered, Local G_2-Manifolds

Geometric data

Local G_2-Manifold: \(\mathbb{C}^2/\Gamma_{\text{ADE}} \hookrightarrow X_7 \rightarrow M_3 \)

Fibral 2-Spheres: \(\sigma_I \in H_2(\mathbb{C}^2/\Gamma_{\text{ADE}}, \mathbb{R}) \)

Hyperkähler Triplet: \((\omega_1, \omega_2, \omega_3) \in H^2(\mathbb{C}^2/\Gamma_{\text{ADE}}, \mathbb{R}) \)

The Higgs field collects the Kähler periods

Higgs field: \(\phi_I = \left(\int_{\sigma_I} \omega_i \right) dx^i \in \Omega^1(M_3) \)

where \(I = 1, \ldots, \text{rank} \ g_{\text{ADE}} \).
Singularities and Supersymmetric 3-cycles

Singularity Enhancement at $x \in M_3$: $\phi_I(x) = 0$ (isolated)

The vanishing cycles trace out 3-spheres:
Questions

What is the global structure of the network of supersymmetric 3-spheres and the M2-brane instantons?

What do the M2-branes wrapped on the supersymmetric 3-spheres descend to in an effective 7d field theory description?

How can their contribution to the 4d superpotential be computed from the 7d field theory description?
Previous Work

M-theory on $\mathbb{R}^{1,3} \times X_7$

Twisted 7d SYM on $\mathbb{R}^{1,3} \times M_3$

4d $\mathcal{N} = 1$ Field theory

- [Acharya, Witten, 2001]
- [BCHLTZ, 2019]
- [CHRTZ, 2020]
- [Barbosa, 2019]
- [Harvey, Moore, 1999]
- [H, 2020]
- [Pantev, Wijnholt, 2009]
- [Braun, Cizel, H, Schafer-Nameki, 2018]
Effective 7d Physics

M-theory on the local G_2-manifold X_7 gives a

Partially twisted 7d SYM on $\mathbb{R}^{1,3} \times M_3$
with gauge group G_{ADE}.

Complex bosonic 1-form on M_3:

\[\varphi = \phi + iA \in \Omega^1(M_3, g_{ADE}) \]

Supersymmetric vacua are solutions to the Hitchin system:

\[i(F_A)_{ij} + [\phi_i, \phi_j] = 0, \quad (d_A \phi)_{ij} = 0, \quad * d_A * \phi = 0 \]
Zero modes along M_3 are determined by

$$H = \frac{1}{2} \left\{ Q, Q^\dagger \right\}, \quad Q = d + [\varphi, \cdot]$$

and counted by the cohomologies

$$H^*_Q(M_3, g_{ADE}).$$

Alternatively, consider perturbative zero modes

$$\chi_a \in \Omega^*(M_3, g_{ADE}) \leftrightarrow \text{Codimension 7 Singularity}$$

The zero modes are recovered from

Mass Matrix : \[M_{ab} = \int_{M_3} \langle \chi_b, Q \chi_a \rangle \]

Yukawa Couplings : \[Y_{abc} = \int_{M_3} \langle \chi_c, [\chi_a, \chi_b] \rangle \]
Colored $\mathcal{N} = 2$ SUSY Quantum Mechanics

Bosonic Coordinates on M_3 : x^i, $i = 1, 2, 3$

Fermions in $x^*(TM_3)$: ψ^i, $i = 1, 2, 3$

Color fermions in $x^*(\text{ad}G_{\text{ADE}})$: λ^α, $\alpha = 1, \ldots, \dim g_{\text{ADE}}$

Lagrangian :
\[
L = \frac{1}{2} \dot{x}^i \dot{x}_i - \frac{1}{2} \dot{\phi}_i \phi_{\lambda,i} + i \bar{\psi}^i \nabla_\tau \psi_i + i \bar{\lambda}^\alpha D_\tau \lambda_\alpha \\
- (D_{(i} \phi_{j)}) \lambda \bar{\psi}^i \psi^j + i (F_{ij}) \lambda \bar{\psi}^i \psi^j + \zeta (\bar{\lambda}^\alpha \lambda_\alpha - 1)
\]

Hilbertspace : $\mathcal{H}_{\text{phys.}} = \Lambda(M_3, g_{\text{ADE}})$

Supercharge : $Q = d + [\varphi, \cdot]$
Bosonic Coordinates on M_3:

$x^i, \quad i = 1, 2, 3$

Fermions in $x^* (TM_3)$:

$\psi^i, \quad i = 1, 2, 3$

Color fermions in $x^* (\text{ad} G_{\text{ADE}})$:

$\lambda^\alpha, \quad \alpha = 1, \ldots, \text{dim } g_{\text{ADE}}$
Supercharge:
\[Q = \bar{\psi}_i (\dot{x}^i - \phi^i_\lambda) \]

Perturbative Groundstates:
\[(x, \lambda) \in M_3 \times \mathfrak{g}_{\text{ADE}} \text{ with } \phi_\lambda(x) = 0\]

1/2-BPS instantons are piecewise solutions to the flow equations

Flow line instanton:
\[\dot{x}^i - \phi^i_\lambda = \dot{x}^i - ic^{\alpha}_{\beta \gamma} \phi^i_{\alpha} \bar{\lambda}^\beta \lambda^\gamma = D_\tau \lambda^\alpha = 0. \]
Abelian Higgs Backgrounds (split)

Abelian solutions to the BPS equations: \(d_A = d, \phi = \phi_I H^I \).

The 1-form Cartan components \(\phi_I \) are harmonic up to sources

\[
d\phi_I = 0, \quad *d* \phi_I = \rho_I \quad \rightarrow \quad \phi_I = df_I, \quad \Delta f_I = \rho_I,
\]

which are supported on codimension \(\geq 2 \) subloci in \(M_3 \).

Root \(\alpha \in g_{ADE} \) \(\leftrightarrow \) Witten SQM into \(M_3 \) with supercharge \(Q^{(\alpha)} = d + \alpha^I df_I \)
Yukawa Couplings

\[Y_{abc} = \int_{M_3} \langle \chi_c^{(\gamma)} , [\chi_a^{(\alpha)} , \chi_b^{(\beta)}] \rangle = \int_{M_3} d^3x_0 \int D\psi D\bar{\psi} \exp \left[i \left(S^{(\alpha)}[x_a, \psi_a, \bar{\psi}_a] + S^{(\beta)}[x_b, \psi_b, \bar{\psi}_b] + S^{(\gamma)}[x_c, \psi_c, \bar{\psi}_c] \right) \right] \]

\[= \sum_{\Gamma_{abc}} (\pm) \Gamma_{abc} \exp \left(-\int_{\Gamma_a} \alpha^l \phi_l - \int_{\Gamma_b} \beta^l \phi_l + \int_{\Gamma_c} \gamma^l \phi_l \right) \]

\[= \sum_{\Gamma_{abc}} (\pm) \Gamma_{abc} \exp \left[-\text{Vol} (S_3^{\Gamma_{abc}}) \right] \rightarrow \text{[Harvey, Moore, 1999]} \]

\[\chi_r^{(\alpha)} = \lim_{T \to -\infty (1+i\delta)} \frac{e^{-iHT} \psi_r e^{iHT}}{e^{-iE_0,T} \langle \chi_r | \psi_r^{(\alpha)} \rangle} \equiv \psi_r^{(\alpha)} \bigg|_{-\infty} , \quad 0 < \delta \ll 1 , \]

\[D\psi D\bar{\psi} = \prod_{-\infty < \tau < 0} d \{ x, \psi, \bar{\psi} \}_{a,\tau} d \{ x, \psi, \bar{\psi} \}_{b,\tau} d \{ x, \psi, \bar{\psi} \}_{c,\tau} \]

\[-\infty < \tau < 0 \quad x_a, -\infty = x_a \quad x_b, -\infty = x_b \quad 0 < \tau < \infty \quad x_c, \infty = x_c \]
Effective 4d Theory (split)

We find:

1. Mathematics fixing effective 4d physics is Fukaya’s Morse theory with multiple Morse functions, [Fukaya, 1997]

2. Chiral and conjugate chiral multiplets in 4d counted by

\[H^1(M_3, \partial(\alpha) M_3) , \ H^2(M_3, \partial(\alpha) M_3) \]

respectively. [Pantev, Wijnholt, 2009], [Braun, Cizel, H, Schafer-Nameki, 2018]

3. Yukawa couplings given by a cup-product on \(H^*(M_3, \partial(\alpha) M_3) \)
Abelian Higgs Backgrounds (non-split)

Abelian solutions to the BPS equations: \(d_A = d, \quad \phi = \text{diag}(\Lambda_K) \).

With eigenvalue 1-forms \(\Lambda \) harmonic up to source terms

\[
d \Lambda_K = \ast j_K, \quad \ast d \ast \Lambda_K = \rho_K,
\]

which are supported on codimension \(\geq 1 \) subloci in \(M_3 \). (TCS)

Two classes of solutions distinguished by their spectral cover:

\[
\mathcal{C} = \{(x, \Lambda_K(x)) \mid x \in M_3\} \subset T^*M_3 \rightarrow \begin{cases}
\Lambda_K \text{ globally defined} \\
\Lambda_K \text{ connected by branch cuts}
\end{cases}
\]
Colored SQM for Non-split Spectral Covers

The eigenvalue 1-forms of the Higgs field are interchanged along paths linking the branch locus

\[\text{Monodromy Action : } \phi \rightarrow g\phi g^{-1} \]
\[\text{Color Mixing : } E^\alpha \rightarrow gE^\alpha g^{-1} \]

Monodromy orbit \([\alpha]\) \[\leftrightarrow\]

Witten SQM into \(C_k\) with supercharge \(Q([\alpha]) = d + \phi[\alpha]\)

Max Hübner
Probing Higgs Bundles for Local G\(_2\)-Manifolds
Effective 4d Theory (non-split)

We find:

1. Gauge symmetry determined by stabilizer of ϕ
2. Chiral and conjugate chiral multiplets in 4d counted by

$$H_{\text{Nov.}}^1(C_k, \phi[\alpha]), \quad H_{\text{Nov.}}^2(C_k, \phi[\alpha])$$

3. Yukawa couplings given by a cup-product on $H_{\text{Nov.}}^*(C_k, \phi[\alpha])$
Summary

We introduced a colored SQM probing Higgs bundles of local G_2-manifolds, and establish the correspondence

\[\text{Euclidean M2 Instantons} \leftrightarrow \text{Instantons of Colored SQM} \]

For abelian backgrounds we compute instanton effects giving the

Mass Matrix : $M_{ab} = \int_{M_3} \langle \chi_b, Q \chi_a \rangle$

Yukawa Couplings : $Y_{abc} = \int_{M_3} \langle \chi_c, [\chi_a, \chi_b] \rangle$.

and determine the effective 4d physics.
Outlook

- Extend on non-split Higgs fields and Novikov cohomologies
- Analyze fluxed T-brane solutions
 [Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019]
- Understand the M-theory origin of the colored SQM
 [Harvey, Moore, 1999]
- Explore other Higgs bundle vacua
 [Cvetič, Heckman, Rochais, Torres, Zoccarato, 2020]
The End
References

Joyce, Dominic D. (1996)
Compact Riemannian 7-manifolds with holonomy G_2. I

Kovalev, Alexei (2003)
Twisted connected sums and special Riemannian holonomy

Corti, Alessio and Haskins, Mark and Nordström, Johannes and Pacini, Tommaso (2015)
G_2-manifolds and associative submanifolds via semi-Fano 3-folds
Acharya, Bobby Samir (1998)
M theory, Joyce orbifolds and superYang-Mills

On gauge enhancement and singular limits in \(G_2\) compactifications of M-theory
JHEP 4.

Guio, Thaisa C. da C. and Jockers, Hans and Klemm, Albrecht and Yeh, Hung-Yu (2017)
Effective action from M-theory on twisted connected sum \(G_2\)-manifolds

Braun, Andreas P. and Schafer-Nameki, Sakura (2017)
Compact, Singular \(G_2\)-Holonomy Manifolds and M/Heterotic/F-Theory Duality
JHEP 4.
Braun, Andreas P. and Del Zotto, Michele (2017)
Mirror Symmetry for G_2-Manifolds: Twisted Connected Sums and Dual Tops
JHEP 5.

Braun, Andreas P. and Cizel, Sebastjan and Hübner, Max and Schäfer-Nameki, Sakura (2018)
Higgs Bundles for M-theory on G_2-Manifolds
JHEP 3.

Acharya, Bobby Samir (2000)
On Realizing $N=1$ superYang-Mills in M theory
arXiv:hep-th/0011089

Acharya, Bobby Samir and Witten, Edward (2001)
Chiral fermions from manifolds of $G(2)$ holonomy
arXiv:hep-th/0109152
Witten, Edward (2001)
Anomaly cancellation on G(2) manifolds
arXiv:hep-th/0108165

Atiyah, Michael and Witten, Edward (2003)
M theory dynamics on a manifold of G(2) holonomy

Pantev, Tony and Wijnholt, Martijn (2009)
Hitchin’s Equations and M-Theory Phenomenology
J. Geom. Phys. 61, 1223–1247

Barbosa, Rodrigo and Cvetič, Mirjam and Heckman, Jonathan J. and Lawrie, Craig and Torres, Ethan and Zoccarato, Gianluca (2019)
T-Branes and G₂-Backgrounds
Introduction and Motivation

Local G_2-Manifolds and 7d twisted SYM

Higgs Bundles and a Colored Supersymmetric QM

Abelian Higgs Backgrounds

Summary and Outlook

Cvetic, Mirjam and Heckman, Jonathan J. and Rochais, Thomas B. and Torres, Ethan and Zoccarato, Gianluca (2020)

Geometric Unification of Higgs Bundle Vacua

Beasley, Chris and Heckman, Jonathan J. and Vafa, Cumrun (2020)

GUTs and Exceptional Branes in F-theory - I

JHEP 1.

Hayashi, Hirotaka and Kawano, Teruhiko and Tatar, Radu and Watari, Taizan (2009)

Compact F-theory GUTs with U(1) (PQ)

Marsano, Joseph and Saulina, Natalia and Schafer-Nameki, Sakura (2009)

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

JHEP 8.
Marsano, Joseph and Saulina, Natalia and Schafer-Nameki, Sakura (2010)
Compact F-theory GUTs with U(1) (PQ)
JHEP 4.

Blumenhagen, Ralph and Grimm, Thomas W. and Jurke, Benjamin and Weigand, Timo (2009)
Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs
Nucl. Phys. B829, 325–369

Donagi, Ron and Wijnholt, Martijn (2011)
Model Building with F-Theory

Donagi, Ron and Wijnholt, Martijn (2014)
Higgs Bundles and UV Completion in F-Theory
Witten, Edward (1982)
Supersymmetry and Morse theory
J. Diff. Geom. 17(4), 661-692.

Xie, Dan and Yonekura, Kazuya (2014)
Generalized Hitchin system, Spectral curve and $\mathcal{N} = 1$ dynamics
JHEP 1.

Kenji Fukaya (1997)
Morse Homotopy and its quantization
Geometry and Topology.

Harvey, Jeffrey A. and Moore, Gregory W. (1999)
Superpotentials and membrane instantons
S. P. Novikov (1981)
Supersymmetry and Morse Theory

Gravitational anomalies
Nuclear Physics B 234(2), 269 - 330.

Xu, Fengjun (2020)
On TCS G_2 manifolds and 4D Emergent Strings

Max, Hubner (2020)
Local G_2-Manifolds, Higgs Bundles and a Colored Quantum Mechanics
Braun, Andreas P. (2019)
M-Theory and Orientifolds
JHEP09(2020)065.

Acharya, Bobby Samir and Foscolo, Lorenzo and Najjar, Marwan and Svanes, Eirik Eik (2020)
T^3-Invariant Heterotic Hull-Strominger Solutions

Acharya, Bobby Samir and Kinsella, Alex and Svanes, Eirik Eik (2020)
New G_2-conifolds in M-theory and their Field Theory Interpretation

Barbosa, Rodrigo and Cvetič, Mirjam and Heckman, Jonathan J. and Lawrie, Craig and Torres, Ethan and Zoccarato, Gianluca (2019)
T-Branes and G_2-Backgrounds
Cvetic, Mirjam and Heckman, Jonathan J. and Rochais, Thomas B. and Torres, Ethan and Zoccarato, Gianluca (2020)
Geometric Unification of Higgs Bundle Vacua

Barbosa, Rodrigo (2019)
A Deformation Family for Closed G_2-Structures on ADE Fibrations