The Calabi-Yau Landscape: Beyond the Lampposts

Mehmet Demirtas
Cornell University

String Pheno Series, 2020

Based on works with (various subsets of):
Manki Kim, Cody Long, Liam McAllister, Jakob Moritz,
Mike Stillman, Andres Rios Tascon
What is possible in quantum gravity?

- de-Sitter solutions?
- Super-Planckian field ranges?

- Quintessence?
- Global symmetries?
What is possible in quantum gravity?

• de-Sitter solutions?
• Super-Planckian field ranges?
• Quintessence?
• Global symmetries?

What is generic in quantum gravity?

• Ultralight axions?
• Light dark sectors?
• Exponential hierarchies?
• Light moduli?
What is possible in quantum gravity?

• de-Sitter solutions?
• Super-Planckian field ranges?
• Quintessence?
• Global symmetries?

A primary method: Study solutions of string theory.

What is generic in quantum gravity?

• Ultralight axions?
• Light dark sectors?
• Exponential hierarchies?
• Light moduli?
What is possible in quantum gravity?

- de-Sitter solutions?
- Super-Planckian field ranges?
- Quintessence?
- Global symmetries?

A primary method: Study solutions of string theory.

What is generic in quantum gravity?

- Ultralight axions?
- Light dark sectors?
- Exponential hierarchies?
- Light moduli?

Can answer for: Weakly coupled compactifications of superstring theories.
To get started: Compactifications on *simple* Calabi-Yau (CY) manifolds with *small* Hodge numbers.
To get started: Compactifications on *simple* Calabi-Yau (CY) manifolds with *small* Hodge numbers.
To get started: Compactifications on *simple* Calabi-Yau (CY) manifolds with *small* Hodge numbers.

However: this is an *exponentially small* fraction of the String Landscape.

- Number of (known) topologically inequivalent CY manifolds increases exponentially with $h^{1,1}$.

 [MD, McAllister, Rios Tascon, hep-th/2008.01730]

- Number of flux vacua in type IIB (F-Theory) compactifications increases exponentially with $h^{2,1} (h^{3,1})$.

 [Denef, Douglas, hep-th/0404116]
 [Denef, Douglas, hep-th/0411183]
 [Taylor, Wang, hep-th/1511.03209]
We can now construct CY threefolds with largest known Hodge numbers and compute relevant topological data.
Outline

I. CY$_3$’s from Triangulations

II. Holomorphic Cycles
 Application: Ultralight Axions

III. 3-cycles
 Application: Towards KKLT
A Quick Review

• This talk: CY threefolds.
A Quick Review

• This talk: CY threefolds.
• Largest known set of CY threefolds: hypersurfaces in toric varieties.

[Batyrev, alg-geom/9310003]
[Kreuzer, Skarke, hep-th/0002240]
A Quick Review

• This talk: CY threefolds.
• Largest known set of CY threefolds: hypersurfaces in toric varieties.

The construction:

1. Take a 4D reflexive lattice polytope
 Reflexive: the only interior point of the polytope (and its dual) is the origin.
A Quick Review

• This talk: CY threefolds.

• Largest known set of CY threefolds: hypersurfaces in toric varieties.

The construction: [Batyrev, alg-geom/9310003]

1. Take a 4D reflexive lattice polytope
 Reflexive: the only interior point of the polytope (and its dual) is the origin.

2. Obtain a (fine, regular, star) triangulation

[Batyrev, alg-geom/9310003]
[Kreuzer, Skarke, hep-th/0002240]
A Quick Review

- This talk: CY threefolds.
- Largest known set of CY threefolds: hypersurfaces in toric varieties.

The construction: [Batyrev, alg-geom/9310003]

1. Take a 4D reflexive lattice polytope
 Reflexive: the only interior point of the polytope (and its dual) is the origin.
2. Obtain a (fine, regular, star) triangulation

This triangulation defines a fan, which describes a toric variety V that has a CY hypersurface X.

[Batyrev, alg-geom/9310003]
[Kreuzer, Skarke, hep-th/0002240]
The number of reflexive lattice polytopes:

- In 2D: 16
The number of reflexive lattice polytopes:
- In 2D: 16
The number of reflexive lattice polytopes:
- In 2D: 16
- In 3D: 4,319
The number of reflexive lattice polytopes:

- In 2D: 16
- In 3D: 4,319
- In 4D: 473,800,776

[Kreuzer, Skarke, hep-th/0002240]
Reflexive polytopes in 4 dimensions
Reflexive polytopes in 4 dimensions

$h^{1,1} = 491$
Reflexive polytopes in 4 dimensions

\[h^{2,1} = 491 \]

\[h^{1,1} = 491 \]
The number of reflexive lattice polytopes:

- In 2D: 16
- In 3D: 4,319
- In 4D: 473,800,776

Number of triangulations $\sim e^{\alpha N}$

- N: Number of lattice points on the polytope
- $h^{1,1} \sim N$
- $\alpha \sim O(1)$
The number of reflexive lattice polytopes:
- In 2D: 16
- In 3D: 4,319
- In 4D: 473,800,776

Number of triangulations $\sim e^{\alpha N}$
- N: Number of lattice points on the polytope
- $h^{1,1} \sim N$
- $\alpha \sim \mathcal{O}(1)$

How many CY$_3$ hypersurfaces are there?
The number of reflexive lattice polytopes:
- In 2D: 16
- In 3D: 4,319
- In 4D: 473,800,776
 [Kreuzer, Skarke, hep-th/0002240]

Number of triangulations \(\sim e^{\alpha N} \)
- \(N \): Number of lattice points on the polytope
- \(h^{1,1} \sim N \)
- \(\alpha \sim O(1) \)

How many CY\(_3\) hypersurfaces are there?
- Not known.
- We recently proved an upper bound of \(10^{428}\). [MD, McAllister, Rios Tascon, hep-th/2008.01730]
Holomorphic Cycles

Notation:

- V: 4D Ambient Variety, $V \supset X$: Calabi-Yau threefold hypersurface
Holomorphic Cycles

Notation:
• \mathcal{V}: 4D Ambient Variety, $\mathcal{V} \supset X$: Calabi-Yau threefold hypersurface
• Mori cone: $\mathcal{M}(X) \subset H_2(X, \mathbb{R})$ is the cone of effective curves.
Holomorphic Cycles

Notation:
• V: 4D Ambient Variety, $V \supset X$: Calabi-Yau threefold hypersurface
• Mori cone: $\mathcal{M}(X) \subset H_2(X, \mathbb{R})$ is the cone of effective curves.
• Kähler cone: $\mathcal{K}(X) \subset H^{1,1}(X, \mathbb{R})$ is the set of cohomology classes of Kähler forms.
Holomorphic Cycles

Notation:
• \(V \): 4D Ambient Variety, \(V \supset X \): Calabi-Yau threefold hypersurface
• Mori cone: \(\mathcal{M}(X) \subset H_2(X, \mathbb{R}) \) is the cone of effective curves.
• Kähler cone: \(\mathcal{K}(X) \subset H^{1,1}(X, \mathbb{R}) \) is the set of cohomology classes of Kähler forms.
• \(\mathcal{M}(X) \), \(\mathcal{K}(X) \) are dual cones:

\[
\mathcal{K}(X) = \left\{ J \in H^{1,1}(X, \mathbb{R}) \left| \int_C J \geq 0 \forall C \in \mathcal{M}(X) \right. \right\}
\]
Holomorphic Cycles

Notation:

• V: 4D Ambient Variety, $V \supset X$: Calabi-Yau threefold hypersurface

• Mori cone: $\mathcal{M}(X) \subset H_2(X, \mathbb{R})$ is the cone of effective curves.

• Kähler cone: $\mathcal{K}(X) \subset H^{1,1}(X, \mathbb{R})$ is the set of cohomology classes of Kähler forms.

• $\mathcal{M}(X), \mathcal{K}(X)$ are dual cones:

\[
\mathcal{K}(X) = \left\{ J \in H^{1,1}(X, \mathbb{R}) \mid \int_C J \geq 0 \forall C \in \mathcal{M}(X) \right\}
\]

• No general algorithm for computing $\mathcal{M}(X)$ in hypersurfaces.
 • Can compute $\mathcal{M}(X)$ on a case-by-case basis.
 • Can compute $\mathcal{M}(V) \supset \mathcal{M}(X)$.

Holomorphic Cycles

Notation:

• V: 4D Ambient Variety, $V \supset X$: Calabi-Yau threefold hypersurface

• Mori cone: $\mathcal{M}(X) \subset H_2(X, \mathbb{R})$ is the cone of effective curves.

• Kähler cone: $\mathcal{K}(X) \subset H^{1,1}(X, \mathbb{R})$ is the set of cohomology classes of Kähler forms.

• $\mathcal{M}(X), \mathcal{K}(X)$ are dual cones:

\[
\mathcal{K}(X) = \left\{ J \in H^{1,1}(X, \mathbb{R}) \mid \int_C J \geq 0 \forall C \in \mathcal{M}(X) \right\}
\]

• No general algorithm for computing $\mathcal{M}(X)$ in hypersurfaces.
 • Can compute $\mathcal{M}(X)$ on a case-by-case basis.
 • Can compute $\mathcal{M}(V) \supset \mathcal{M}(X)$.

Holomorphic Cycles

• Volumes of 2-cycles C, 4-cycles D, and X itself

$$\text{Vol}(C) = \int_C J \quad \text{Vol}(D) = \frac{1}{2} \int_D J \wedge J \quad \text{Vol}(X) = \frac{1}{6} \int_X J \wedge J \wedge J$$

are determined by the Kähler form J and the intersection numbers:

$$\kappa_{ijk} = \# D_i \cap D_j \cap D_k \quad \text{where } \{D_i\} \text{ span } H_4(X, \mathbb{Z}).$$
Holomorphic Cycles

- Volumes of 2-cycles C, 4-cycles D, and X itself

\[
\begin{align*}
\text{Vol}(C) &= \int_C J \\
\text{Vol}(D) &= \frac{1}{2} \int_D J \wedge J \\
\text{Vol}(X) &= \frac{1}{6} \int_X J \wedge J \wedge J
\end{align*}
\]

are determined by the Kähler form J and the intersection numbers:

$$\kappa_{ijk} = \# D_i \cap D_j \cap D_k \quad \text{where} \{D_i\} \text{ span } H_4(X, \mathbb{Z}).$$

- \textit{Stretched} Kähler cone:

$$\tilde{\mathcal{K}}(X) := \left\{ J \in H^{1,1}(X, \mathbb{R}) \left| \int_C J \geq 1 \forall C \in \mathcal{M}(X) \right. \right\} \quad (2\pi)^2 \alpha' \equiv \ell_s^2 \to 1$$
Kähler cone generator

Mori cone generator

Stretched Kähler cone

Mori cone generator

Kähler cone generator
Holomorphic Cycles

- Volumes of 2-cycles C, 4-cycles D, and X itself

$$\text{Vol}(C) = \int_C J \quad \text{Vol}(D) = \frac{1}{2} \int_D J \wedge J \quad \text{Vol}(X) = \frac{1}{6} \int_X J \wedge J \wedge J$$

are determined by the Kähler form J and the intersection numbers:

$$\kappa_{ijk} = \#D_i \cap D_j \cap D_k \quad \text{where } \{D_i\} \text{ span } H_4(X, \mathbb{Z}).$$

- Stretched Kähler cone:

$$\tilde{\mathcal{K}}(X) := \left\{ J \in H^{1,1}(X, \mathbb{R}) \bigg| \int_C J \geq 1 \forall C \in \mathcal{M}(X) \right\} \quad (2\pi)^2 \alpha' \equiv \ell_s^2 \to 1$$

estimate for the convergence of the worldsheet instanton expansion and the control of the α' expansion.

[Candelas, De La Ossa, Green, Parkes, '90]
Recent Advances

• Recap: Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 • Can be done via open source math software, like Sage.
Recent Advances

• **Recap:** Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 - Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

[Braun, Walliser, hep-th/1106.4529]
[Blumenhagen, Gao, Rahn, Shukla, hep-th/1205.2485]
[Gao, Shukla, hep-th/1307.1139]
[Altman, Gray, He, Jejjala, Nelson, hep-th/1411.1418]
[Cicoli, Muia, Shukla, hep-th/1611.04612]
[Braun, Lukas, Sun, hep-th/1704.07812]
[Altman, He, Jejjala, Nelson, hep-th/1706.09070]
[Long, McAllister, Stout, hep-th/1603.01259]
[Cicoli, Ciupke, Mayrhofer, Shukla, hep-th/1801.05434]
[Carifio, Cunningham, Halverson, Krioukov, Long, Nelson, hep-th/1711.06685]
... many more!
Recent Advances

• **Recap:** Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 • Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

 - [Braun, Walliser, hep-th/1106.4529]
 - [Blumenhagen, Gao, Rahn, Shukla, hep-th/1205.2485]
 - [Gao, Shukla, hep-th/1307.1139]
 - [Altman, Gray, He, Jejjala, Nelson, hep-th/1411.1418]
 - [Cicoli, Muià, Shukla, hep-th/1611.04612]
 - [Braun, Lukas, Sun, hep-th/1704.07812]
 - [Altman, He, Jejjala, Nelson, hep-th/1706.09070]
 - [Long, McAllister, Stout, hep-th/1603.01259]
 - [Cicoli, Ciupke, Mayrhofer, Shukla, hep-th/1801.05434]
 - [Carifio, Cunningham, Halverson, Krioukov, Long, Nelson, hep-th/1711.06685]
 ... many more!

• $h^{1,1} \lesssim 30$: Few, limited studies.

 - [Long, McAllister, McGuirk, hep-th/1407.0709]
 - [Long, McAllister, Stout, hep-th/1603.01259]
Recent Advances

• Recap: Need to triangulate a reflexive polytope and compute intersection numbers.
 • Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.
 - [Braun, Walliser, hep-th/1106.4529]
 - [Blumenhagen, Gao, Rahn, Shukla, hep-th/1205.2485]
 - [Gao, Shukla, hep-th/1307.1139]
 - [Altman, Gray, He, Jejjala, Nelson, hep-th/1411.1418]
 - [Cicoli, Muià, Shukla, hep-th/1611.04612]

• $h^{1,1} \lesssim 30$: Few, limited studies.
 - [Long, McAllister, McGuirk, hep-th/1407.0709]
 - [Long, McAllister, Stout, hep-th/1603.01259]

• $h^{1,1} = \mathcal{O}(100)$: Only recently.
 - [MD, Long, McAllister, Stillman, hep-th/1808.01282]
 - [MD, McAllister, Rios Tascon, hep-th/2008.01730]
Recent Advances

• **Recap:** Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 • Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

• $h^{1,1} \lesssim 30$: Few, limited studies.

• **Problem:** **Computations get expensive rapidly** with $h^{1,1}$.
 • There are 19,849,166 intersection numbers at $h^{1,1} = 491$!
Recent Advances

• **Recap:** Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 - Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

• $h^{1,1} \lesssim 30$: Few, limited studies.

• **Problem:** Computations get expensive rapidly with $h^{1,1}$.
 - There are 19,849,166 intersection numbers at $h^{1,1} = 491$!

• **Solution:** Start from scratch, rewrite everything.
Recent Advances

• Recap: Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 • Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

• $h^{1,1} \lesssim 30$: Few, limited studies.

• **Problem:** Computations get **expensive rapidly** with $h^{1,1}$.
 • There are 19,849,166 intersection numbers at $h^{1,1} = 491$.

• **Solution:** Start from scratch, rewrite everything.

Obtain one triangulation

<table>
<thead>
<tr>
<th>Year</th>
<th>$h^{1,1}$</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>25</td>
<td>a few hours</td>
</tr>
<tr>
<td>2017</td>
<td>491</td>
<td>2s</td>
</tr>
<tr>
<td>2019</td>
<td>491</td>
<td>20ms</td>
</tr>
</tbody>
</table>

[MD, McAllister, Rios Tascon, hep-th/2008.01730]
Recent Advances

• **Recap:** Need to **triangulate** a reflexive polytope and **compute intersection numbers**.
 - Can be done via open source math software, like Sage.

• $h^{1,1} \lesssim 7$: Many, systematic studies.

• $h^{1,1} \lesssim 30$: Few, limited studies.

• **Problem:** Computations get expensive rapidly with $h^{1,1}$.
 - There are 19,849,166 intersection numbers at $h^{1,1} = 491$.

• **Solution:** Start from scratch, rewrite everything.

<table>
<thead>
<tr>
<th>Year</th>
<th>$h^{1,1}$</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>25</td>
<td>a few hours</td>
</tr>
<tr>
<td>2017</td>
<td>491</td>
<td>2s</td>
</tr>
<tr>
<td>2019</td>
<td>491</td>
<td>20ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>$h^{1,1}$</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>100</td>
<td>30 mins</td>
</tr>
<tr>
<td>2018</td>
<td>491</td>
<td>30s</td>
</tr>
<tr>
<td>2019</td>
<td>491</td>
<td>3s</td>
</tr>
</tbody>
</table>

[MD, McAllister, Rios Tascon, hep-th/2008.01730]
Introducing: CYTools

A software package for constructing CY hypersurfaces in toric varieties.

[MD, McAllister, Rios Tascon, work in progress]
Introducing: CYTools

A software package for constructing CY hypersurfaces in toric varieties.

Can construct a CY and compute intersection numbers in a few lines of code:

vertices=[[1,0,0,0],[0,1,0,0],[0,0,0,1],[21,28,36,42],[-63,-56,-48,-42]]
poly=LatticePolytope(vertices)
triangulation=poly.triangulate()
triangulation.intersection_numbers()

[MD, McAllister, Rios Tascon, work in progress]
Introducing: CYTools

A software package for constructing CY hypersurfaces in toric varieties.

Can construct a CY and compute intersection numbers in *a few lines of code*:

```python
vertices=[[1,0,0,0],[0,1,0,0],[0,0,0,1],[21,28,36,42],[-63,-56,-48,-42]]
poly=LatticePolytope(vertices)
triangulation=poly.triangulate()
triangulation.intersection_numbers()
```

Can compute:

- Lattice points on the polytope
- The dual polytope
- Faces, dual faces of the polytope
- GLSM charge matrix
- Stanley-Reisner ideal
- Second Chern class
- Mori cone of the ambient variety
- Stretched Kähler cone
- Volumes of cycles
- … many more!

[MD, McAllister, Rios Tascon, work in progress]
Introducing: CYTools

A software package for constructing CY hypersurfaces in toric varieties.

Can construct a CY and compute intersection numbers in a few lines of code:

```python
vertices=[[1,0,0,0],[0,1,0,0],[0,0,0,1],[21,28,36,42],[-63,-56,-48,-42]]
poly=LatticePolytope(vertices)
triangulation=poly.triangulate()
triangulation.intersection_numbers()
```

Can compute: Many orders of magnitude faster than Sage.

- Lattice points on the polytope
- The dual polytope
- Faces, dual faces of the polytope
- GLSM charge matrix
- Stanley-Reisner ideal
- Second Chern class
- Mori cone of the ambient variety
- Stretched Kähler cone
- Volumes of cycles
- ... many more!

[MD, McAllister, Rios Tascon, work in progress]
Introducing: CYTools

A software package for constructing CY hypersurfaces in toric varieties.

Can construct a CY and compute intersection numbers in a few lines of code:

```python
vertices=[[1,0,0,0],[0,1,0,0],[0,0,0,1],[21,28,36,42],[-63,-56,-48,-42]]
poly=LatticePolytope(vertices)
triangulation=poly.triangulate()
triangulation.intersection_numbers()
```

Can compute: Many orders of magnitude faster than Sage.

- Lattice points on the polytope
- The dual polytope
- Faces, dual faces of the polytope
- GLSM charge matrix
- Stanley-Reisner ideal
- Second Chern class
- Mori cone of the ambient variety
- Stretched Kähler cone
- Volumes of cycles
- ... many more!

Aside: Some of these quantities can be predicted using Machine Learning.

- Achieved using a deep neural net. High precision even at $h^{1,1} = 491$.
- 50µs per prediction. A further speed-up of a factor of $\sim 10,000$. [MD, McAllister, Rios Tascon, hep-th/2008.01730]
What is *generic* in the Calabi-Yau hypersurface landscape?
What is *generic* in the Calabi-Yau hypersurface landscape?

Method:

1. Construct Ensembles of Geometries
2. Detect Patterns
3. Study Consequences
What is **generic** in the Calabi-Yau hypersurface landscape?

Method:

1. Construct Ensembles of Geometries
2. Detect Patterns
3. Study Consequences

Pattern: At large $h^{1,1}$, **Kähler cones are narrow.**

- Stretched Kähler cone is far away from the origin.

[MD, Long, McAllister, Stillman, hep-th/1808.01282]
Kähler cone generator

Mori cone generator

Stretched Kähler cone

Kähler cone generator

Mori cone generator
Stretched Kähler cone
What is **generic** in the Calabi-Yau hypersurface landscape?

Method:

- **Construct Ensembles of Geometries**
- **Detect Patterns**
- **Study Consequences**

Pattern: At large $h^{1,1}$, **Kähler cones are narrow.**

- Stretched Kähler cone is far away from the origin.
- **Volumes** of effective 2-cycles, 4-cycles and the CY itself are **large.**

[MD, Long, McAllister, Stillman, hep-th/1808.01282]
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.

C_4 axions: $\theta_i := \int_{D_i} C_4$,

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

$$V(\theta) \sim e^{-2\pi \text{Vol}(D)}$$
Consequences:

Consider type IIB compactified on an O3/O7 orientifold of X.

\[C_4 \text{ axions: } \theta_i := \int_{D_i} C_4 , \]

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

\[V(\theta) \sim e^{-2\pi \text{Vol}(D)} \]

Large 4-cycles \(\rightarrow \) Suppressed potential \(\rightarrow \) Ultralight axions!

[MD, Long, McAllister, Stillman, hep-th/1808.01282]
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.

C_4 axions: $\theta_i := \int_{D_i} C_4$,

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

$$V(\theta) \sim e^{-2\pi \text{Vol}(D)}$$

Large 4-cycles \rightarrow Suppressed potential \rightarrow Ultralight axions! \rightarrow Black hole superradiance (See Viraf’s talk!) [MD, Long, McAllister, Stillman, hep-th/1808.01282]

[MD, Long, Marsh, McAllister, Mehta, Stott, work in progress]
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.

\[C_4 \text{ axions: } \theta_i := \int_{D_i} C_4, \]

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

\[V(\theta) \sim e^{-2\pi \text{Vol}(D)} \]

Large 4-cycles \(\rightarrow \) Suppressed potential \(\rightarrow \) Ultralight axions! \[\rightarrow \] Black hole superradiance (See Viraf’s talk!)

Further Consequences:
• Hierarchies in 4-cycle volumes \(\rightarrow \) Realizing KKLT is hard.

[MD, Long, McAllister, Stillman, hep-th/1808.01282]
[MD, Long, Marsh, McAllister, Mehta, Stott, work in progress]
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.

C_4 axions: $\theta_i := \int_{D_i} C_4$,

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

$$V(\theta) \sim e^{-2\pi \text{Vol}(D)}$$

Large 4-cycles \rightarrow Suppressed potential \rightarrow Ultralight axions! \rightarrow Black hole superradiance (See Viraf’s talk!)

Further Consequences:
• Hierarchies in 4-cycle volumes \rightarrow Realizing KKLT is hard.
• Large 4-cycles \rightarrow Rich 7-brane dark sector. [Cvetic, Halverson, Lin, Long, hep-th/2004.00630]
Consequences:
Consider type IIB compactified on an O3/O7 orientifold of X.

\[C_4 \text{ axions: } \theta_i := \int_{D_i} C_4, \]

get a potential from non-perturbative objects (ED3s, D7 branes) wrapping 4-cycles,

\[V(\theta) \sim e^{-2\pi \text{Vol}(D)} \]

Large 4-cycles \(\rightarrow \) Suppressed potential \(\rightarrow \) Ultralight axions!
\(\rightarrow \) Black hole superradiance (See Viraf’s talk!)

Further Consequences:

• Hierarchies in 4-cycle volumes \(\rightarrow \) Realizing KKLT is hard.
• Large 4-cycles \(\rightarrow \) Rich 7-brane dark sector.
• Implications for fitting warped throats in compactifications

[MD, Long, McAllister, Stillman, hep-th/1808.01282]
[MD, Long, Marsh, McAllister, Mehta, Stott, work in progress]
[Carta, Moritz, Westphal, hep-th/1902.01412]
Periods of 3-cycles

To study flux compactifications, we need to compute the periods of 3-cycles.
• Pick a basis of $H_3(X, \mathbb{Z}), \{A^i, B_j\}$ such that
 \[
 A^i \cap B_j = -B_j \cap A^i = \delta^i_j \quad \text{and} \quad A^i \cap A^j = B_i \cap B_j = 0
 \]
Periods of 3-cycles

To study flux compactifications, we need to compute the periods of 3-cycles.

• Pick a basis of $H_3(X, \mathbb{Z})$, $\{A^i, B_j\}$ such that

$$A^i \cap B_j = -B_j \cap A^i = \delta^i_j \quad \text{and} \quad A^i \cap A^j = B_i \cap B_j = 0$$

• Periods:

$$\vec{\Pi}(\vec{u}) = \left(\int_{A^i} \Omega(\vec{u}) \right. \left. \int_{B_i} \Omega(\vec{u}) \right)$$

where $\Omega(\vec{u})$ is the holomorphic 3-form and \vec{u} are the complex structure moduli.
Periods of 3-cycles

To study flux compactifications, we need to compute the periods of 3-cycles.

- Pick a basis of $H_3(X, \mathbb{Z})$, $\{A^i, B_j\}$ such that

$$A^i \cap B_j = -B_j \cap A^i = \delta^i_j \quad \text{and} \quad A^i \cap A^j = B_i \cap B_j = 0$$

- Periods:

$$\vec{\Pi}(\vec{u}) = \begin{pmatrix} \int_{A^i} \Omega(\vec{u}) \\ \int_{B_i} \Omega(\vec{u}) \end{pmatrix}$$

where $\Omega(\vec{u})$ is the holomorphic 3-form and \vec{u} are the complex structure moduli.

- Can be written in terms of a prepotential \mathcal{F}:

$$\vec{\Pi}(\vec{u}) = \begin{pmatrix} 2\mathcal{F} - u^a \partial_a \mathcal{F} \\ \partial_a \mathcal{F} \\ 1 \\ u^a \end{pmatrix}$$
Periods of 3-cycles

- Around a large complex structure point,

\[
\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u})
\]

\[
\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} u^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3}, \quad \tilde{X}: \text{mirror of } X
\]
Periods of 3-cycles

• Around a large complex structure point,

\[\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u}) \]

\[\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} u^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3} , \quad \tilde{X}: \text{mirror of } X \]

• To compute the periods we need to identify an \textbf{integral basis of 3-cycles.}
Periods of 3-cycles

- Around a large complex structure point,
 \[\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u}) \]
 \[\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} u^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3} , \quad \tilde{X}: \text{mirror of } X \]

- To compute the periods we need to identify an integral basis of 3-cycles.

Mirror Symmetry:

\[
\begin{align*}
\text{Integral} & \quad \text{3-cycles in } X \\
\text{Integral} & \quad \text{2n-cycles in } \tilde{X}
\end{align*}
\]

- Integral 3-cycles in X
- Integral 2n-cycles in \(\tilde{X}\)
Periods of 3-cycles

• Around a large complex structure point,
 \[F(\vec{u}) = F_{\text{poly}}(\vec{u}) + F_{\text{exp}}(\vec{u}) \]
 \[F_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} u^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3}, \quad \tilde{X}: \text{mirror of } X \]

• To compute the periods we need to identify an integral basis of 3-cycles.
• Coefficients of \(F_{\text{poly}}(\vec{u}) \) depend on the geometric data of holomorphic cycles in \(\tilde{X} \).

Mirror Symmetry:

\[\begin{array}{c|c}
\text{Integral 3-cycles in } X & \text{Integral 2n-cycles in } \tilde{X} \\
\end{array} \]
Periods of 3-cycles

- Around a large complex structure point,

\[
\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u})
\]

\[
\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!}\tilde{\kappa}_{abc}u^a u^b u^c + \frac{1}{2}a_{ab}u^a u^b + b_a u^b + \frac{\zeta(3)\chi(\tilde{X})}{2(2\pi i)^3}
\]

\[
\mathcal{F}_{\text{exp}}(\vec{u}) = -\frac{1}{(2\pi i)^3} \sum_{C \in \mathcal{M}(\tilde{X})} n_C^0 \text{Li}_3(\text{e}^{2\pi i \vec{C} \cdot \vec{u}})
\]
Periods of 3-cycles

- Around a large complex structure point,

\[\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\exp}(\vec{u}) \]

\[\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} a^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3} \]

\[\mathcal{F}_{\exp}(\vec{u}) = -\frac{1}{(2\pi i)^3} \sum_{C \in \mathcal{M}(\tilde{X})} n^0_C \text{Li}_3(e^{2\pi i \tilde{C} \cdot \vec{u}}) \]
Periods of 3-cycles

- Around a large complex structure point,

\[
\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u})
\]

\[
\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!}\tilde{\kappa}_{abc}u^a u^b u^c + \frac{1}{2} a_{ab}u^a u^b + b_a u^b + \frac{\zeta(3)\chi(\tilde{X})}{2(2\pi i)^3}
\]

\[
\mathcal{F}_{\text{exp}}(\vec{u}) = -\frac{1}{(2\pi i)^3} \sum_{C \in \mathcal{M}(\tilde{X})} n_C^0 \text{Li}_3(e^{2\pi i \tilde{C} \cdot \vec{u}})
\]

where \(n_C^0\) are the genus zero Gopakumar-Vafa invariants.

[Gopakumar, Vafa, hep-th/9809187]
[Gopakumar, Vafa, hep-th/9812127]
Periods of 3-cycles

- Around a large complex structure point,

\[\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u}) \]

\[\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!}\tilde{k}_{abc}u^a u^b u^c + \frac{1}{2}a_{ab}u^a u^b + b_a u^b + \frac{\zeta(3)\chi(\tilde{X})}{2(2\pi i)^3} \]

\[\mathcal{F}_{\text{exp}}(\vec{u}) = -\frac{1}{(2\pi i)^3} \sum_{C \in \mathcal{M}(\tilde{X})} n_0^C \text{Li}_3(e^{2\pi i\vec{C} \cdot \vec{u}}) \]

where \(n_0^C \) are the genus zero Gopakumar-Vafa invariants.

- Existing methods allow for computing \(n_0^C \) when \(h^{2,1} \leq 5 \).
 - Also, hardly any results unless \(\mathcal{M}(\tilde{X}) \) is smooth and simplicial.

[Greene, Plesser, '90]
[Candelas, De La Ossa, Green, Parkes, '90]
[Batyrev, alg-geom/9310003]
[Hosono, Klemm, Theisen, Yau, hep-th/9308122]
[Hosono, Klemm, Theisen, Yau, hep-th/9406055]
... and more
Periods of 3-cycles

• Around a large complex structure point,

\[\mathcal{F}(\vec{u}) = \mathcal{F}_{\text{poly}}(\vec{u}) + \mathcal{F}_{\text{exp}}(\vec{u}) \]

\[\mathcal{F}_{\text{poly}}(\vec{u}) = -\frac{1}{3!} \tilde{\kappa}_{abc} u^a u^b u^c + \frac{1}{2} a_{ab} u^a u^b + b_a u^b + \frac{\zeta(3) \chi(\tilde{X})}{2(2\pi i)^3} \]

\[\mathcal{F}_{\text{exp}}(\vec{u}) = -\frac{1}{(2\pi i)^3} \sum_{C \in \mathcal{M}(\tilde{X})} n_0^C \text{Li}_3(e^{2\pi i \vec{C} \cdot \vec{u}}) \]

where \(n_0^C \) are the genus zero Gopakumar-Vafa invariants.

• Existing methods allow for computing \(n_0^C \) when \(h^{2,1} \lesssim 5 \).
 • Also, hardly any results unless \(\mathcal{M}(\tilde{X}) \) is smooth and simplicial.

• **Now: can compute** \(n_0^C \) **systematically for** \(h^{2,1} = \mathcal{O}(10) \).
 • No requirements on \(\mathcal{M}(\tilde{X}) \),
 • Up to \(h^{2,1} = \mathcal{O}(100) \) for some curves!

[Gopakumar, Vafa, hep-th/9809187]
[Gopakumar, Vafa, hep-th/9812127]
[MD, Kim, McAllister, Moritz, Rios Tascon, work in progress]
Is a de-Sitter solution possible in quantum gravity?
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An *explicit* construction of a dS vacuum.

Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. Exponentially small flux superpotential W_0

2. Strongly warped throat

3. Non-perturbative effects to stabilize Kähler moduli

4. Anti-D3 brane to uplift
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. Exponentially small flux superpotential W_0

2. Strongly warped throat

3. Non-perturbative effects to stabilize Kähler moduli

4. Anti-D3 brane to uplift
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:
1. **Exponentially small flux superpotential** \mathcal{W}_0
2. Strongly warped throat
3. Non-perturbative effects to stabilize Kähler moduli
4. Anti-D3 brane to uplift
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. **Exponentially small flux superpotential** \mathcal{W}_0

2. Strongly warped throat

3. Non-perturbative effects to stabilize Kähler moduli

4. Anti-D3 brane to uplift
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

• A leading candidate: the KKLT scenario. [Kachru, Kallosh, Linde, Trivedi, hep-th/0301240]

Requires:

1. Exponentially small flux superpotential \bar{W}_0
 • Until recently: $\langle \bar{W}_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 [Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124]
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

• A leading candidate: the KKLT scenario. [Kachru, Kallosh, Linde, Trivedi, hep-th/0301240]

Requires:

1. Exponentially small flux superpotential W_0
 • Until recently: $\langle W_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 [Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124]
 • An algorithm: Depends on the holomorphic data of X. [MD, Kim, McAllister, Moritz, hep-th/1912.10047]
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

• A leading candidate: the KKLT scenario. [Kachru, Kallosh, Linde, Trivedi, hep-th/0301240]

Requires:

1. Exponentially small flux superpotential W_0
 • Until recently: $\langle W_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 [Denef, Douglas, Florea, Grassi, Kachru, hep-th/0503124]
 • An algorithm: Depends on the holomorphic data of X.
 [MD, Kim, McAllister, Moritz, hep-th/1912.10047]
 • An example with $\langle W_0 \rangle \sim 10^{-8}$.

Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. Exponentially small flux superpotential W_0
 - Until recently: $\langle W_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 - An example with $\langle W_0 \rangle \sim 10^{-8}$. [MD, Kim, McAllister, Moritz, hep-th/1912.10047]
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. Exponentially small flux superpotential W_0
 - Until recently: $\langle W_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 - An example with $\langle W_0 \rangle \sim 10^{-8}$. [MD, Kim, McAllister, Moritz, hep-th/1912.10047]

2. Strongly warped throat
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

- A leading candidate: the KKLT scenario. \[\text{[Kachru, Kallosh, Linde, Trivedi, hep-th/0301240]}\]

Requires:

1. Exponentially small flux superpotential W_0 ✓
 - Until recently: $\langle W_0 \rangle \sim 10^{-2}$ \[\text{[Denef, Douglas, Florea, hep-th/0404257]}\]
 - An example with $\langle W_0 \rangle \sim 10^{-8}$. \[\text{[MD, Kim, McAllister, Moritz, hep-th/1912.10047]}\]

2. Strongly warped throat
 - Can analytically continue to near a conifold point and use the same algorithm.
 - Bonus: a method for obtaining orientifolds at $h^{1,1} = \mathcal{O}(100)$. \[\text{[MD, Kim, McAllister, Moritz, hep-th/2009.03312]}\]
Is a de-Sitter solution possible in quantum gravity?

Ultimate Goal: An explicit construction of a dS vacuum.

Requires:

1. **Exponentially small flux superpotential \hat{W}_0**
 - Until recently: $\langle \hat{W}_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 - An algorithm: Depends on the holomorphic data of X.
 - An example with $\langle \hat{W}_0 \rangle \sim 10^{-8}$. [MD, Kim, McAllister, Moritz, hep-th/1912.10047]

2. **Strongly warped throat**
 - Can analytically continue to near a conifold point and use the same algorithm.
 - Bonus: a method for obtaining orientifolds at $h^{1,1} = O(100)$. [MD, Kim, McAllister, Moritz, hep-th/2009.03312]
Ultimate Goal: An \textit{explicit} construction of a dS vacuum.

Requires:

1. Exponentially small flux superpotential W_0 \checkmark
 - Until recently: $\langle W_0 \rangle \sim 10^{-2}$ [Denef, Douglas, Florea, hep-th/0404257]
 - An example with $\langle W_0 \rangle \sim 10^{-8}$. [MD, Kim, McAllister, Moritz, hep-th/1912.10047]

2. Strongly warped throat \checkmark
 - Can analytically continue to near a conifold point and use the same algorithm.
 - Bonus: a method for obtaining orientifolds at $h^{1,1} = O(100)$. [MD, Kim, McAllister, Moritz, hep-th/2009.03312]
Summary

• We can efficiently construct CY threefolds with large Hodge numbers.
 • Can compute volumes and periods of cycles, intersection numbers, etc.
 • CYTools: A Software Package for Analyzing CY Hypersurfaces
Summary

• We can efficiently construct CY threefolds with large Hodge numbers.
 • Can compute volumes and periods of cycles, intersection numbers, etc.
 • CYTools: A Software Package for Analyzing CY Hypersurfaces

• Enables many applications
 1. Narrow Kähler cones \rightarrow Ultralight axions
 2. Towards KKLT: Small flux superpotential, strongly warped throats
Summary

• We can efficiently construct CY threefolds with large Hodge numbers.
 • Can compute volumes and periods of cycles, intersection numbers, etc.
 • CYTools: A Software Package for Analyzing CY Hypersurfaces

• Enables many applications
 1. Narrow Kähler cones \rightarrow Ultralight axions
 2. Towards KKLT: Small flux superpotential, strongly warped throats

• Whenever we access a new regime of the Landscape, we encounter surprises!
Summary

• We can efficiently construct CY threefolds with large Hodge numbers.
 • Can compute volumes and periods of cycles, intersection numbers, etc.
 • CYTools: A Software Package for Analyzing CY Hypersurfaces

• Enables many applications
 1. Narrow Kähler cones \rightarrow Ultralight axions
 2. Towards KKLT: Small flux superpotential, strongly warped throats

• Whenever we access a new regime of the Landscape, we encounter surprises!

THANK YOU!